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Abstract

The calculation of protein structures from nuclear magnetic resonance (NMR) data has been greatly facilitated by improvements
in software for the automatic assignment of NOESY spectra. Nevertheless, for larger proteins, resonance overlap may lead to an
overwhelming number of assignment options per peak. Although most software for automatic NOESY assignment can deal with
a certain level of assignment ambiguity, structure calculations fail when this becomes too high. Reducing the number of assignment
options per peak by reducing the chemical shift tolerances can lead to correct assignments being excluded, and thus also to incorrect
structures. We have investigated, systematically, for three proteins of different size, the influence of the chemical shift tolerance limits
(D) and of the number of simulated annealing (SA) cooling steps on the performance of the software ARIA. Large tolerance win-
dows, and the correspondingly high levels of ambiguity, did not cause problems when appropriately slower cooling was used in our
SA protocol. In cases where a high percentage of well-converged structures was not achieved, we demonstrate that it is more pro-
ductive to calculate fewer structures whilst applying slow cooling, than to calculate many structures with fast cooling. In this way,
high-quality structures were obtained even for proteins whose NMR spectra showed great degeneracy, and where there was much
inconsistency in peak alignment between different samples. The method described herein opens the way to the automated structure
determination of larger proteins from NMR data.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Nuclear magnetic resonance (NMR) is the principal
method for macromolecular structure determination in
solution. The complete procedure consists of the consec-
utive steps of sample preparation, data acquisition,
peak-picking, resonance assignment, collection of dis-
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tance- and other structural restraints, and finally struc-
ture calculation and refinement [1].The traditionally
slow step of assigning individual NOE peaks manually,
provided until recently the major source of structural re-
straints. The introduction of automated NOE assign-
ment software (reviewed recently [2]) has provided a
viable alternative to this cumbersome and error-prone
process. However, automated methods have limitations
that require careful attention to avoid erroneous
calculations.

NOESY spectra of even small proteins often contain
significant signal overlap resulting in multiple assign-
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ment options for the majority of cross-peaks. The aver-
age number of NOE assignment options per peak (nav)
depends strongly on the chemical shift tolerance window
(D) used. Assignment options which fall outside of this
range are rejected. If the window is too large, too many
options are considered and the simulated annealing (SA)
process does not converge. Reducing D reduces the num-
ber of assignment options, but introduces the risk of
excluding correct assignments, for example, in cases
where peaks are shifted due to experimental effects (such
as sample heating in a TOCSY experiment) or where
there are small differences between samples used for
the collection of different spectra [3]. Such exclusion of
a correct assignment will result in an alternative, wrong
assignment, which can distort the calculated structures.

An alternative way of reducing the average number
of assignments per peak is to reject all peaks for which
there are more than a user-defined number of assign-
ment options. We call this the assignment cut-off or
the �maximum number of assignment options per peak�
(nmax). Due to the intrinsic redundancy of structural
information in NOESY spectra, the rejection of even a
high number of peaks generally has little effect on the
convergence of calculations. Recently, it has been shown
that the omission of up to 50% of NOE cross-peaks has
little influence on the quality of the calculated structures
[4].

For smaller proteins (50–130 amino acids), a com-
promise can usually be found between degree of assign-
ment ambiguity and number of rejected peaks.
However, with increasing protein size, the increased
signal overlap due to the sheer number of protons pres-
ent, results in a dramatic increase in average number of
assignments per peak. The same problem affects data-
sets of smaller proteins where alignment of the frequen-
cies in the resonance assignment-list and the NOESY
peak-list is particularly poor. In these cases, any at-
tempt to reduce the number of assignment options by
means of nmax results in the rejection of too many
NOESY peaks, leaving insufficient distance restraints
to define a high-resolution structure. For this reason,
a strategy is needed for handling peaks with highly
ambiguous assignments, rather than simply rejecting
them.

The success of previous workers in obtaining high-
quality structures for the melanoma inhibitory activity
(MIA) protein by using a slow cooling phase during sim-
ulated annealing to handle highly ambiguous NOE
peak-lists [5] showed that the rate of cooling is an impor-
tant parameter which influences convergence in calcula-
tions from very ambiguous data. Allowing more time
for thermal equilibration minimises the risk of the struc-
ture becoming trapped in local energy minima with
insufficient kinetic energy to escape. Slow cooling there-
fore increases the probability of finding the global min-
imum of the target function.
We have expanded this idea to study systematically,
the effects of slow-cooling on calculations carried out
using automatically assigned NOE data from ARIA
[6–10]. Peak-lists from datasets of varying quality and
from proteins of different size were used, together with
appropriately chosen chemical shift tolerances D. In this
work, we aimed to quantify the benefits of slow-cooling
on convergence when very ambiguous or very incom-
plete peak-lists are used. We have also identified optimal
numbers of cooling steps for NMR datasets with differ-
ent chemical shift tolerance requirements, whilst mini-
mising use of CPU time.

Finally, we show that, whenever there are problems
with calculation convergence, this approach is a far
more productive way of using available CPU-time than
previous suggestions to simply calculate more structures
using a fast-cooling protocol [11].
2. Theory

Following the assignment of NOESY spectra, unam-
biguous and ambiguous NOE-derived distance re-
straints (plus additional restraints like dihedral angle
restraints, hydrogen bonds, and disulphide bridges, if
present) are used to calculate an ensemble of structures.
In the automated NOE assignment program ARIA,
these are refined in an iterative manner, each time using
the latest round of structures to find new assignments
for input into the next round of calculations.

Structure calculation algorithms aim to find the glo-
bal minimum of a hybrid energy function E (target func-
tion), which includes a priori chemical knowledge of the
system (the force field, defining bond lengths, bond an-
gles, improper angles, and non-bonded interactions)
and experimental data (the structural restraints):

E¼EchemþEexp ¼
X

i

wiEi

¼wcovalentEcovalentþwangleEangleþwfloatEfloat

þwvdWEvdWþwunambigEunambigþwambigEambigþ�� � ð1Þ

The standard minimisation methods [12] tend to steer
the system into local minima and frequently fail to reach
the global minimum if the starting model is far away
from the correct one. The introduction of simulated
annealing (SA) optimisation techniques [11,13] have
therefore had a large impact on structural biology.
Monte Carlo-based and molecular dynamics-based SA
have been used in structure prediction, molecular mod-
elling, X-ray refinement and NMR structure determina-
tion for many years. The goal of these methods is to find
the global minimum of the target function E by reducing
the temperature of the system during a molecular
dynamics simulation. The parameter �temperature� in
this context has no physical meaning, but is simply a



Fig. 1. Temperature and energy constants (with weighting, wi) in a
typical torsion angle dynamics SA protocol. wcovalent and wvdW are the
energy weightings for bonded and non-bonded interactions, respec-
tively. wfloat is the weighting of the angular energy term for chemical
groups which undergo floating chirality assignment.
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measure of the probability of the macromolecule to
cross an energy barrier (i.e., its kinetic energy). Depend-
ing on temperature, a system is able to overcome local
minima, thus allowing for the sampling of a larger con-
formational space. In ARIA, the user can choose be-
tween Cartesian (see [12] for a review) and Torsion
Angle dynamics [14]. Both of these SA strategies have
been optimised for ambiguous NOE-derived restraints.
Table 1
The four different NMR datasets used for the calculations discussed

Name PDB entries Chain length Second

PB1 1PQS 77 4b + 2a

ArgR 1AOY 78 3a + 2b

HRDC 1D8B 91 3a

EVH1 1QC6 115 7b + 1a

The NOESY peak-lists of ArgR, HRDC, and EVH1 were obtained by manu
the internal peak-picking algorithm of Sparky v.3.1 (http://www.cgl.ucsf.ed
manually. Unless specified in the text, no manual NOE assignments were in
We use torsion angle dynamics for all structure calcula-
tions in this work as this generally produces an increased
convergence radius and leads to better local geometries.

The standard protocol for torsion-angle molecular
dynamics in ARIA used in the present work consists
of an initial high-temperature conformational search at
2000 K, followed by two cooling stages in which the
temperature is decreased linearly from 2000 to 1000 K
and then again from 1000 to 50 K. During these three
stages, the weights wi in Eq. (1), defining the relative
weights of the different energy terms of the target func-
tion, are varied (see Fig. 1).
3. Materials and methods

3.1. Proteins and datasets used in these calculations

The NMR test data used for our structure calcula-
tions came from four different proteins: the C-terminal
PB1 domain of yeast CDC24p (Leitner et al., 2005, per-
sonal communication) (PB1 in the text), the N-terminal
domain of the arginine repressor [15,16] (ArgR in the
text), the HRDC domain of RecQ [17] (HRDC in the
text), and the Ena/VASP homology 1 (EVH1) domain
of human vasodilator stimulated phosphoprotein
(VASP) [18] (EVH1 in the text). The important charac-
teristics of these proteins and their spectra, relevant to
this work, are summarised in Table 1.

3.2. Structure calculations

Automatic assignment of NOESY spectra and struc-
ture calculations were performed using the program
ARIA v.1.2 on a Dual Athlon M1800+ cluster at the
Pasteur Institute. Unless otherwise specified, the number
of structures calculated was 20 for iterations 0–7 and
100 for the final iteration 8. The number of cooling steps
used in each of the five cooling protocols tested herein
was 9000, 18,000, 36,000, 72,000, and 144,000, respec-
tively. In each protocol, the lengths of the first and sec-
ond cooling stages were fixed in the ratio 5:4. The results
ary structure Type of data Number of peaks

3D NOESY 13C-edited 3D: 1909
15N-edited 3D: 766

2D NOESY 2D (H2O): 1403
2D (D2O): 1245

3D NOESY 13C-edited 3D: 2455
15N-edited 3D: 824

3D NOESY 13C-edited 3D: 3506
15N-edited 3D: 2772

al peak-picking, while those of PB1 were generated automatically with
u/home/sparky/). Diagonal- and obvious noise peaks were removed
cluded.

http://www.cgl.ucsf.edu/home/sparky/
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of the calculations were evaluated by computing a pair-
wise rmsd (precision) and an rmsd to a reference struc-
ture (accuracy) of the 20 lowest-energy structures. For
references, we used the published X-ray structure for
EVH1 [19] and the deposited NMR solution structures
for ArgR [15,16], HRDC [17], and PB1 (Leitner et al.,
2005, personal communication).
4. Results and discussion

4.1. Effect of SA cooling rate on the accuracy of

structures obtained with increased chemical shift tolerance

windows D

The resonance assignment-list and peak-lists from
three proteins, ArgR, HRDC, and EVH1 were used as
input data for all calculations described herein (see Ta-
ble 1). Recently, we investigated the effects of different
chemical shift tolerances D on the accuracies of struc-
tures obtained from these datasets using the program
ARIA [3]. In these calculations, the ARIA default sim-
ulated annealing protocol was used, which consists of
9000 cooling steps (5000 for the first and 4000 for the
second cooling phase, respectively). For each of these
datasets, we performed two sets of structure calculations
(one at each of two set values of the parameter nmax), in
which only the sizes of the tolerance windows D were
varied. Calculations were performed using 16 different
sets of D. In each of these D-sets, Dpro2 (direct proton
dimension), Dpro1 (indirect proton dimension), and
Dhet1 (heteronuclear dimension) were fixed in the ratio
0.5:1:12.5. In the first set of calculations, nmax was fixed
at 20 (the default setting of ARIA). In this case, all
peaks with more than 20 assignment possibilities were
discarded. The number of peaks discarded due to excess
ambiguity increases dramatically as the tolerance win-
dow D is opened up. Hence, when nmax is limited, large
windows D result in significant rejection of data. The
second set of calculations was performed with
nmax = 200 (i.e., effectively including all cross-peaks in
the calculations, regardless of their degree of ambiguity).
In these calculations, no peaks were rejected due to ex-
cess assignment options, allowing larger tolerance win-
dows to be used without loss of restraints. The price
paid for retaining these highly ambiguous data was a
dramatic increase in nav with increasing D, which often
led to failure of convergence when using standard SA
protocols.

The results of these previous structure calculations
for ArgR, HRDC, and EVH1 are shown in Figs. 2A 0,
3A 0, and 4A 0, respectively. Each of the test datasets dis-
plays a different optimal range for D, within which struc-
tures could be obtained with average backbone rmsds to
previously published structures of less than 2 Å. This
optimum D range depends on the protein size and on
the cleanness and accuracy of the peak-list used as input
data. With large values for D, the increased ambiguity
led either to the rejection of large numbers of peaks in
the case where nav was limited to 20 (Figs. 2A 0, 3A 0,
4A 0, top panel) or a dramatic increase in nav in the case
where this limit was relaxed (Figs. 2A 0, 3A 0, 4A 0, bottom
panel), as D was increased. In all cases, above a certain
critical D, the number of rejected peaks in calculations
with nmax = 20 and the number of assignment possibili-
ties per peak in calculations with nmax = 200 eventually
prevents convergence to accurate structures.

In this work, we investigated systematically the effect
of slower cooling on datasets of different quality, to as-
sess whether it may be possible to improve convergence
at higher D. For each domain, three sets of D values were
selected for which unsatisfactory structures had been ob-
tained using the standard 9000 SA cooling steps. The
selected sets are indicated by the vertical lines (labelled
A–T) in Figs. 2A 0, 3A 0, and 4A 0. The chemical shift tol-
erance for the indirect proton dimension (Dpro1) is given
on the x-axis. The calculations were repeated four times
with increasing numbers of cooling steps to a maximum
of 144,000. In the case where nmax was limited to 20
(Figs. 2A 0, 3A 0, and 4A 0; top panel), many peaks were
thus rejected and peak-lists were very incomplete. De-
spite this, high quality, well-converged structures could
still be obtained, provided that the number of cooling
steps was sufficiently increased. The results of calcula-
tions carried out with nmax = 20, for D values labelled:
A, B, C (ArgR); G, H, J (HRDC); and N, P, Q
(EVH1) are summarised in the upper panel of Figs.
2B 0, 3B 0, and 4B 0. It can be seen that simply doubling
the default number of 9000 cooling steps can lead to dra-
matic improvements in rmsd to the reference structure,
as in the cases of ArgR (2D dataset) and the EVH1 do-
main (3D dataset). The HRDC domain (3D dataset)
showed comparable improvements with 36,000 steps.

In the casewhere nmaxwas effectively unlimited (i.e., set
to 200; Figs. 2A 0, 3A 0, and 4A 0; bottom panel), similarly
dramatic improvements in the final structures were ob-
tained (Figs. 2B 0, 3B 0, and 4B 0; bottompanel). In this case,
increasing the number of cooling steps enabled the ARIA
software to copewith the larger number of assignment op-
tions per peak, rather than simply excluding large num-
bers of highly ambiguous peaks from the calculations.
The results of calculations carried out with nmax = 200
for D values labelled: D, E, F (ArgR); K, L, M (HRDC);
and R, S, T (EVH1) are summarised in the lower panel of
Figs. 2B 0, 3B 0, and 4B 0. For all 18 sets of calculations,
regardless of whether nmax was restricted or not, the same
input data which gave badly defined structures with 9000
cooling steps produced structures with greatly improved
rmsd to the published, reference structures (<2 Å), when
the number of cooling steps was increased.

A closer look at Figs. 2A 0, 3A 0, and 4A 0 (bottom pa-
nel) allows quantification of these benefits. When



Fig. 3. Effects of chemical shift tolerances and slow-cooling on HRDC
(see Fig. 2 for description of plots).

Fig. 4. Effects of chemical shift tolerances and slow-cooling on EVH1
(see Fig. 2 for description of plots).

Fig. 2. Effects of chemical shift tolerances and slow-cooling on ArgR.
(A 0) Effects of chemical shift tolerances D on calculations with 9000
cooling steps. For each protein, two plots are presented corresponding
to nmax = 20 (upper plots) and nmax = 200 (lower plots). Each plot
contains three panels, representing three different parameters as a
function of D. The top panels show the percentage of peaks accepted
by ARIA in the calculations. The middle panels show (i) the accuracy
(black lines) and (ii) the precision (red lines) of the calculated
structures relative to the reference structures. These rmsds were
calculated for the 20 lowest-energy structures (solid lines) and for all
the 100 final structures (dashed lines). The lower panels show the
average number of assignment options per peak (nav). Numbers on the
x-axis represent the values of Dpro1, The three capital letters on the top
of each plot indicate calculations using larger chemical shift tolerances,
for which poor quality structures were obtained. (B 0) Effect of slow
cooling on the 18 calculations indicated by capital letters in (A 0). Black
and red, solid and dashed lines are as in (A 0). The top and bottom
panels show calculations performed with nmax = 20 and nmax = 200 as
in (A 0). The plots show consistently that, from the same NOE input
data and D-sets, greatly improved structures can be obtained if the
number of cooling steps is increased. In most cases, 72,000 cooling
steps were sufficient to obtain accurate and precise high-resolution
structures. In addition, with slower SA cooling, the dashed and solid
lines converge, i.e., the statistics for the entire ensemble become
comparable to those for the best 20 structures. This reflects the higher
percentage success rate of the algorithm when slower cooling is used.
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nmax = 200, no peak is rejected due to nmax. When D was
increased over a certain critical value, peak lists became
too ambiguous and calculations produced incorrect re-
sults. With the default value of 9000 cooling steps,
ARIA produced incorrect structures already with toler-
ances as high as Dpro1 = 0.03 for ArgR (nav = 15.4),
Dpro1 = 0.08 for HRDC (nav = 20.8), and Dpro1 = 0.07
for EVH1 (nav = 22). Nevertheless, with sufficiently slow
cooling, ARIA handled much larger values of nav, such
as 52.01, 39.27, and 32.15, for ArgR, HRDC, and
EVH1, respectively, without detrimental effects (see cal-
culation F in Fig. 2B 0, calculation M in Fig. 3B 0 and cal-
culation T in Fig. 4B 0). Notable is the case of ArgR,
where a simple increase in the number of cooling steps
from 9000 to 144,000 enabled ARIA to handle 3.5 times
more average ambiguities per peak. In calculations with
limited ambiguity (nmax = 20; Figs. 2A 0, 3A 0, and 4A 0;
top panel), incorrect structures were obtained when D
was increased over a critical value because too many
peaks were rejected due to the imposed limitation on
nmax. With 9000 cooling steps, poor results were ob-
tained already with Dpro1 = 0.03 for ArgR (nav = 10.4,



Fig. 5. Ensembles of 100 structures obtained from calculations E
(ArgR), L (HRDC), and S (EVH1) with different numbers of cooling
steps. The number in the box below each ensemble represents the
percentage of structures with an accuracy within 2 Å of the reference
structure, and shows that slower cooling dramatically increases the
probability of each individual SA run leading to the correct fold.
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18.7% rejected peaks), Dpro1 = 0.08 for HRDC
(nav = 10.8, 27.4% rejected peaks), and with Dpro1 = 0.07
for EVH1 (nav = 12.7, 14.7% rejected peaks). When a
sufficient number of cooling steps was provided, good
results were obtained even with Dpro1 = 0.05 for ArgR
(nav = 12.7, 48% rejected peaks), with Dpro1 = 0.10 for
HRDC (nav = 12.5, 45% rejected peaks) and Dpro1 =
0.09 for EVH1 (nav = 14.3, 43% rejected peaks). It is
important to note that these percentages refer to the re-
moval of the most ambiguous peaks due to the imposed
cut-off nmax and not to the random deletion of peaks
from the peak-list. Taken together, the results show that
slower cooling during the simulated annealing process
increases the general robustness of the calculation proce-
dure, allowing for the use of more ambiguous and less
complete peak lists.

Slower cooling increases the probability of obtaining
the correct fold, which corresponds theoretically to the
global minimum of the target function. The solid lines
in Figs. 2B 0, 3B 0, and 4B 0 show the accuracy (black lines)
and precision (red lines) of the 20 lowest-energy struc-
tures from the 100 calculated in each ensemble. For
comparison, the dashed lines indicate the accuracy and
precision of the total ensemble of 100 structures, respec-
tively. The general trend is that the solid and dashed
lines tend to become closer and sometimes even overlay,
as the number of cooling steps increases. This shows
that, in general, the larger the number of cooling steps,
the higher the percentage of accurate calculated struc-
tures (with backbone rmsd values within 2 Å of the pub-
lished reference structures). The boxed numbers in Fig. 5
indicate, for calculations E, L, and S (representing the
datasets for ArgR, HRDC, and EVH1, respectively),
the number of structures out of the total 100 calculated,
which were accurate to within 2 Å backbone rmsd of the
respective reference structures, for calculations per-
formed using different numbers of cooling steps. All
100 structures in each ensemble calculated are superim-
posed, clearly illustrating that slowing down the cooling
rate dramatically increases the robustness of the calcula-
tion procedure and hence the probability of obtaining
the correct structure.

Fig. 6 shows, in histogram format, the effect of the
SA cooling rate on the percentage of accurate structures
obtained for each of the datasets studied. To exemplify
this, we chose three calculations carried out with
nmax = 200 (calculations F (ArgR), L (HRDC), and S
(EVH1)), where the benefits of slow-cooling were partic-
ularly dramatic. Using the standard 9000 cooling steps,
the structure calculations showed an almost zero proba-
bility of success in converging to within 2 Å of the refer-
ence structure (white bars). However, increasing the
number of cooling steps resulted in a dramatic increase
in the percentage of highly accurate structures. For all
3D datasets tested, almost all the final structures were
accurate to within 2 Å of the reference structure when
using 36,000 cooling steps or more (mid-grey, dark grey,
and black bars). Even with the extremely ambiguous cal-
culation F (nav = 52.0, highly degenerate 2D ArgR data-
set), similar accuracies could still be achieved when the
cooling was slowed to 144,000 steps.

It should be noted that structures calculated using
very slow cooling show a tendency to appear over-re-
strained in regions where there are few or no experimen-
tal restraints, such as loops or terminal regions. In the
absence of experimental restraints, slower equilibration
leads to preferences between almost equivalent minima
in the potential surface created by the a priori compo-
nent of the target function alone (Echem in Eq. (1)).
Therefore, 15N T1,

15N T2, and heteronuclear NOE mea-
surements are particularly important to identify genu-
inely flexible regions within the structure.

4.2. Slower cooling versus increased number of structure
calculations

To illustrate the effects of slow cooling for a protein
with very highly ambiguous NOE peak lists, we



Fig. 6. The percentage of accurate structures obtained improves with
the number of cooling steps used. The probability of success of
calculations increases dramatically with slower cooling. When a
sufficiently large number of cooling steps were used, almost all the
final structures were accurate to within an rmsd of 2 Å to the reference
structure (dark bars). This is in direct contrast to similar calculations
which used 9000 cooling steps (white bars), where few, if any, of the
final structures were close to the reference structure. (A) Calculation F
(ArgR). (B) Calculation L (HRDC). (C) Calculation S (EVH1) (see
Fig. 2).

98 M. Fossi et al. / Journal of Magnetic Resonance 175 (2005) 92–102
analysed an NMR dataset from the 8.9 kDa C-terminal
PB1 domain of yeast CDC24p. These data suffered from
particularly poor alignment of the frequencies in the
NOESY peak-lists and the resonance assignment-list: a
problem that often arises when working with samples
which are unstable over the period of time needed to ac-
quire all of the experiments. Any attempt to obtain de
novo structures of this domain using a protocol with
9000 cooling steps failed completely, even when a lim-
ited number of unambiguous, manually assigned, long-
range NOEs were included as additional input data for
the calculations. In cases like this, there is no choice
but to use larger chemical shift tolerances D. However,
in the case of the PB1 domain, this led to excessive ambi-
guity (>16 assignment possibilities per peak) and very
cumbersome, non-convergent calculations. Simply
increasing the number of structures calculated in each
iteration, as has been previously suggested [11], did
not result in satisfactory numbers of correct structures.
We calculated 100, 200, and 500 structures per iteration
(far in excess of the typical default value of 20 calculated
structures) using the fast-cooling protocol. The back-
bone rmsds of best 20 structures of the final ensembles
in each of these three cases were 4.10, 3.41, and
3.35 Å, respectively, and the accuracies with respect to
the reference structures were described by backbone
rmsds of 7.2, 7.0, and 7.0 Å, respectively. Regardless
of the numbers of structures calculated, convergence
was poor. This shows clearly that a better strategy is
needed to calculate structures from such highly ambigu-
ous data than simply increasing the number of calcu-
lated structures.

We therefore investigated whether using a slow-cool-
ing SA protocol on this dataset could rescue the struc-
ture calculations in ARIA. The result was a successful
de novo automatic structure determination of the PB1
domain when large tolerance values (Dpro1 = 0.07) were
combined with 72,000 cooling steps. Using this combi-
nation, an average of 16.4 possible assignments per peak
in the first iteration occurred but did not prevent conver-
gence. The results are represented in Fig. 7. For 9000
cooling steps, the convergence was extremely poor
(Fig. 7A). The backbone rmsd of any individual calcu-
lated structure to the reference structure was never less
than 7 Å. However, when 72,000 cooling steps were used
with this same set of tolerance values, the 20 lowest-en-
ergy structures showed a precision of <1 Å and an accu-
racy of <3 Å to the reference structure (Fig. 7B). This
result is encouraging as the calculations in Fig. 5B were
performed in the absence of any additional structural
information such as hydrogen bonds, dihedral angle re-
straints and manually assigned NOE-based distance re-
straints. Significantly, it shows that the correct fold
can be obtained based entirely on automatically as-
signed NOE data even in the presence of inconsistencies
within the datasets. In Fig. 7C, we show the results ob-
tained when supplementing the dataset used in Fig. 7B
with a set of experimental hydrogen bond restraints.
This led to further improvements in precision and accu-
racy (rmsd to reference of 1.45 Å). The plots in Figs. 7B
and C show clearly that correct results can be obtained
only when sufficiently large values for D are chosen, as
this is the only way to avoid exclusion of correct NOE
assignments for this dataset. The wider tolerance



Fig. 7. De novo automatic structure determination of PB1 domain of CDC24p. Dependence of the accuracy (black line) and precision (red line) of
the 20 lowest-energy structures on D. The structure ensembles calculated with Dpro1 = 0.07 are shown on the right. (A) Calculations with 9000 cooling
steps. (B) Calculations with 72,000 cooling steps. When D is sufficiently large, the information contained in the dataset is very ambiguous but self-
consistent. The slow-cooling yields convergent results and a correct overall fold. (C) Calculations with 72,000 cooling steps with hydrogen bond
restraints added. The presence of these additional restraints restricts the conformational space to be searched and yielded very well converging and
accurate results (accuracy = 1.55 for Dpro1 = 0.07).
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windows led to a larger number of assignment possibili-
ties per peak, i.e., a higher degree of ambiguity, which
then requires much slower cooling to avoid the structures
being trapped in local minima in the target function.

4.3. Time costs of the method

Use of a slow cooling phase during simulated anneal-
ing has the obvious disadvantage of increasing the CPU
time needed for structure calculations. The time needed
to calculate a single structure in each of the successive
ARIA iterations, when using different numbers of cool-
ing steps, is shown in Fig. 8A (with the example of cal-
culation L of the HRDC domain). The initial iterations,
in which the average number of assignment options per
peak nav are still large, are clearly the slowest, but the
time needed to calculate a single structure decreases as
the iterations progress. This is illustrated by the three
examples shown in Fig. 8B. In addition, convergence
to the correct overall fold is already achieved in the ear-
lier iterations (in iteration 4 in the case of HRDC and
EVH1 and in iteration 6 in the case of the highly ambig-
uous dataset of ArgR), as shown in Fig. 8C. These
trends suggest that, although slow-cooling is of benefit



Fig. 8. Variations of structure calculation time, nav and accuracy
during the ARIA iterations. (A) Computational time required per
structure at each iteration, using calculation L of the HRDC domain
as an example. The differently dashed and dotted lines represent
different numbers of cooling steps ranging from 9000 to 144,000. (B)
Reduction in nav with successive iterations (shown for three calcula-
tions: F (ArgR), L (HRDC), and S (EVH1), corresponding to F, L,
and S in Fig. 2). (C) Reduction in backbone rmsd to the reference
structure with successive iterations. Rmsds were calculated using the
eight lowest-energy structures (out of 20) for iterations 0–7 and the 20
lowest-energy structures (out of 100) for the final iteration 8. The
correct fold is already obtained by iteration 3 for calculation L, by
iteration 4 for calculation S and by iteration 6 for calculation F, due to
the higher initial value of nav in the latter case.

Table 2
Comparison of accuracy and precision for three different calculation
strategies

Protein Method

A B C

ArgR (calculation F) Accuracy 1.51 1.51 1.56
Precision 0.61 0.61 0.62

HRDC (calculation L) Accuracy 1.92 1.92 1.96
Precision 0.67 0.67 0.73

EVH1 (calculation S) Accuracy 1.62 1.62 1.62
Precision 0.57 0.57 0.58

Once the correct fold is obtained, slow-cooling can be replaced by
faster cooling. Using three test calculations corresponding to each
NMR dataset, the quality of the structures in terms of accuracy and
precision are compared for three different calculation strategies: (A)
72,000 cooling steps used in each iteration of ARIA; (B) 72,000 cooling
steps used in iterations 1–7 and 9000 in iteration 8; (C) 72,000 cooling
steps used in the early iterations until the calculation converges to a
consistent global fold, then 9000 in the following iterations. Good
folds were observed already in iteration 3 for HRDC, in iteration 4 for
EVH1, and in iteration 6 for ArgR. The structures obtained with the
faster strategies B and C were only marginally less accurate and precise
than those obtained with the slower strategy A (see Fig. 9).

Fig. 9. Total computational time for different cooling schemes using
calculation L of HRDC as an example (see Fig. 2): (A) constant slow
cooling (in all iterations); (B) slow cooling for the first seven iterations,
then reducing the number of cooling steps to 9000 in iteration 8; (C)
slow cooling in early iterations until reasonable convergence was
observed, then reducing the number of cooling steps to 9000 in
iterations 5–8. The latter allows considerable time savings without
noticeably affecting the quality of the results (results for the case of
72,000 cooling steps, for all NMR datasets used in these studies, are
summarised in Table 2).
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in the early iterations, it is probably unnecessary to cool
slowly in all ARIA iterations.

We therefore repeated the calculations shown in Fig.
8B using 72,000 cooling steps up until iteration 4 for
HRDC and EVH1 domains, and until iteration 6 for
ArgR (i.e., the points at which good folds were
obtained) and then 9000 cooling steps for the remaining
iterations, during which the structures were refined. The
structures showed no notable difference in quality to
those obtained when using 72,000 cooling steps for all
iterations (Table 2). This modified strategy allowed sub-
stantial savings in CPU time, because fivefold more
structures are calculated in the final iteration (iteration
8) than in all earlier iterations.

Fig. 9 shows the total time required to accomplish 9
iterations of calculation L of the HRDC domain using
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fixed-rate versus variable cooling schemes, starting from
different initial numbers of cooling steps (9000 to
144,000). The general trend shows a decrease in the total
computational time taken when the number of cooling
steps is reduced to 9000 for: (i) the final iteration (itera-
tion 8) only (black bars; B); and (ii) iterations 5–8 (white
bars; C). The reduced-time protocols allow time savings
of around 18 and 33%, respectively. For example, on
four 1.8 GHz processors, the CPU time required with
72,000 cooling steps in all iterations was 37 h and the re-
duced-time version of this, using 9000 steps for itera-
tions 5–8 was 31 h. Although the slow-cooling
protocols are approximately 3–4 times slower than the
fast (9 h) protocol which uses 9000 steps throughout,
the former consistently yields high quality, accurate
structures, while the latter frequently fails when applied
to imperfect datasets. We therefore conclude that the
investment of additional CPU time for slow-cooling is
clearly time well spent. Hence, if computational time
available is limited (rarely a problem with the recent
generations of computers), protocols C or B are recom-
mended. However, if time is not limiting, we would sug-
gest employing the slower, most robust, protocol A.
5. Conclusions

We have shown elsewhere [3] that over-restricting the
chemical shift tolerance windows, D, during automated
NOE assignment can result in the exclusion of the correct
assignment from the available options for a given peak
and consequently induce distortions in the structures cal-
culated. Here, we have shown that even highly ambigu-
ous and incomplete NMR datasets can be handled by
the automatic NOE assignment software ARIA if suffi-
cient time for thermal equilibration is allowed during
the SA cooling phase. For the ArgR, HDRC, and
EVH1 datasets tested, using larger values of D produced
accurate and precise structures if the number of cooling
steps was increased (from the default 9000 to 72,000
steps). The combined use of large D values and slow-
cooling dramatically increased the robustness of the SA
protocol towards assignment ambiguity. Using this ap-
proach, we successfully calculated reliable structures
from data which suffered from poor peak alignment,
uncertainty in chemical shift positions, and extensive res-
onance overlap; problems that commonly plague the
spectra of large proteins and complexes. The method de-
scribed in this work could thus extend the use of NMR to
in solving the structures of larger proteins, and enhance
the role of NMR in structural genomics.

In addition, we show clearly that, whenever the ambi-
guity or the incompleteness of the peak-list prevents cal-
culations from converging, a slow-cooling strategy is far
more productive than previous suggestions simply to
calculate many more structures in the computational
time available [11]. When the input NMR data are lar-
gely complete and unambiguous, fast cooling may in-
deed produce accurate structures in a short time.
However, with incomplete or highly ambiguous input
data, the percentage success level of the calculations
drops dramatically, and increases only when more gen-
erous chemical shift tolerances are coupled with slower
SA cooling protocols. The higher demand on CPU time
of slow-cooling protocols is well compensated by a dra-
matic rise of the probability of success in finding the glo-
bal minimum in the overall potential during simulated
annealing. As demonstrated by the PB1 domain, CPU
time well spent on slow-cooling can save months of
painstaking manual assignment.
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